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Formulas are obtained for the evolution of small three~-dimensional perturbations
arbitrarily specified at the initial instant of time of a plane Couette flow of in-
compressible viscous fluid in an unbounded space.

The behavior of small three~-dimensional perturbations of the velocity v (r, ¢) and
pressure p (r, t} fields in an unbounded incompressible viscous fluid on the background
of a plane Couette flow

ux = u~+ Ty, wy= uy= 0, P = const (D

where u and T are constants, was first considered in [1]. Formula for one of the com-
ponents of velocity perturbations was also obtained there for some special form of initial
conditions, Formulas which define the perturbation evolution under arbitrary initial con-
ditions v (r)and p (r) are derived below,

We proceed from the linearized Navier-Stokes equations [2]

v av 1 ,
E—-}—(u%—l‘y)*@;-{-x"l‘vy—%—?Vp:vAv, dive =0 Z (2)

where x” is the unit vector of the (Ou -axis,
We pass to the Fourier representation in space variables, where we shall use k instead
of r. Using (2) for v (k, &y and p (k, ¢#) we obtain

vk, ) =1 (k, t) exp [— ituk, — viQ (k, 1)} (3)
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We set in Egs, (2)
v(r) =rot (@8 (r —rg)), o*=1
where « is some constant unit vector and & (r) is a three-dimensional Dirac function,
and substitute everywhere t = t, for the initial instant. ¢t = 0. These initial conditions
yield the Fourier representation of the tensor of Green's function Ggy (r — rq, t — ¢,) of
the considered problem of perturbation propagation from the instantaneous source at point
r = ry at instant ¢ = #,. The structure of that tensor is defined by

Bxx Bay O
Gy t—t)=i0(t—te)| O g, 0 |x )
O 8y 8

exp [— ik* (ro +u (¢ — 1)) — v (t —to) Q (k, t —1o)]

where u == (u, 0, 0) and 6 (¢) is a Heaviside function. The diagonal elements of tensor
gap (k, ¢ — 2,) are . k2

Spx = [K*a],, 8y, = 1k*al, 55—, g,, = [k*a],
K* = (k, by + T (t—to) b, k)

Similar, although more cumbersome, expressions can be obtained for g, and g,, with
the use of (6).

The explicit expression for tensor G,y (¥ == To, L — 1) In coordinate representation is
complicated and cumbersome ; the structure of all of its components is of the form

8 (t—1y) — (8)
V v (1 — 10))* (1 + ©/12)
M, (r|a, 1) exp {—T(tl—_t—o) s
& — xo — Ut — lo) — ot (y — yo)
i
where M, (r|’®, T) are linear operators acting on the functions of space coordinates r
and of parameters dependent on unit vector « and time in terms of the dimensionless
combination == I' (¢ — ¢,). The drift of perturbations and their distortion with time can
be seen from [8].
Owing to the positive definiteress of the quadratic form @ (k, ¢) as implied by (4) and
the property v > 0, it follows from (7) that for all componentsof Gq, (k, t — to), Gap(k,
t —ty) | — 0 when t —ty-> oo ,forany v and I According to (8) components
Gap (r — To, t — to) have the same property. Thus we obtain the known property of the
stability of Couette flow (1) with respect to arbitrary small perturbations in an unbounded
space for any « and T.
The behavior of small perturbations in more complicated flows of incompressible vis-
cous fluid in an unbounded space can be similarly investigated. For example, for the flow

Gab (r — o, t—ty) =

) + {7 — G+ (3 — 20)2]}

ug = Ty, uy= — Tz, uz== 0
which corresponds to a uniform rotation of the fluid as a whole about the axis Oz at an
angular velocity I' the evolution of perturbations is defined by formulas
v (k, t) = f (K, t) exp (— V&%), p (k, t) = 2ip I (kxvy — kyvy) [ K* (9)
The expression for f (k, t) is fairly cumbersome and is not presented here. We only
point out that for considerable ¢ the behavior of v (k, t) is determined by the second
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factor in the first formula of (9),i.e. the perturbations fade with time. Hence the rota-
tion of a viscous incompressible fluid is stable with respect to such perturbations,
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A solution of the Navier-Stokes equations for the flow of fluid in and outside a
drop with conditions of matching at the interface is derived by the method of
finite differences. Drag coefficients are determined in the range (0.5 < Re
100) of Reynolds numbers for a solid sphere, a drop, and a small gas bubble, Vor-
tex and velocity distribution at the drop boundary is determined.

The flow around a solid sphere in the intermediate range of Reynolds numbers had
been thoroughly investigated [1]. Solutions for the problem of flow around a spherical
drop are presented in [2, 3] for Re <€ 1. The method of joining asymptotic expansions
was used in [4] for obtaining a solution for small Re with allowance for inertia terms in
the Navier-Stokes equations, In [5 — 7] solutions were derived for Re > 1 in the boun-
dary layer approximation (a detailed analysis of approximate solutions for low and high
Re appeared in the survey paper [8]). The particular case of the drop of water in air,
which is distinguished by the high ratio viscosities of the inner and outer media (n =~
56), was investigated in [9] in the intermediate range of Reynolds numbers by the method
of finite differences. It was shown there that for such p the drag of the moving drop is
virtually the same as that of the solid sphere. Here, the drag of the drop is investigated
for 0 <p < oo and Re << 100,

The rectilinearuniform motion of a drop in a homogeneous mass force field is consi~
dered., The Weber number is assumed to be fairly low so that the drop virtually retains
its spherical shape,

In a system of coordinates attached to the drop the motion is steady and axisymmetric
up to Re = 100 , as in the case of a solid sphere [10].

With the coordinate origin located at the drop center and the polar axis directed down-
stream (8 = 0) , the Navier-Stokes equations for the fluid flow in and outside the drop
and the boundary conditions at the drop surface, expressed in terms of variables ¥ (the
stream function) and [ (the vortex), are of the form



