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, OF A PLANE 

Formulas are obtained for the evolution of small three-dimensidplal perturbations 
arbitrarily specified at the initial instant of time of a plane Couette flow of in- 
compressible viscous fluid in an unbounded space. 

The behavior of small three-dimensional perturbations of the velocity Y (r, t) and 
pressure p (r, tl fields in an unbounded incompressible viscous fluid on the background 
of a plane Couette flow 

Ux = u-l- ry, uy = Ut = 0, P = consfi (1) 

where u and P are constants, was first considered in El& Formula for one of the com- 

ponents of velocity perturbations was also obtained there for some special form of initial 
conditions. Formulas which define the perturbation evolution under arbitrary initial con- 

ditions Y [r) and p (rj are derived below. 
We proceed from the linearized Navier-Stokes equations [2] 

where x’ is the unit vector of the 0~ -axis. 
We pass to the Fourier representation in space variables, where we shall use k instead 

of r. Using (2) for v (k, C) and p (k, t) we obtain 

v (k, t) = fi (k, t) exp [- itid, - vtQ (k, t)l 
(3) 

Q fk, tf = (1 +_I?t~J3) kr2 + 13klkr, + kv2 + k, 

Ii* = (kx*, kU*, kZ*) = (kx, k,, + l‘k,t, kJ 

kY* 
J/k,“+ kza > i 

- arctg oy #*I 
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We set in Eqs. (2) 
v (r) = rot (US (r - ro)) , a2 = 1 

where cz is some constant unit vector and 6 (r) is a three-dimensional Dirac function, 
and substitute everywhere t = to for the initial instant. t = 0 . These initial conditions 
yield the Fourier representation of the tensor of Green’s function Gal, (r - ro, t - to) of 

the considered problem of perturbation propagation from the instantaneous source at point 
r = r. at instant t = to. The structure of that tensor is defined by 

g 

7 
gm 0 

Gab (k, t -to) = ie (t-to) 

I I 

g,, 0 x (7) 

O gz, g*z 

exp [- ik* (rO + u (t - to)) --(t-to)Q(k,t--o)l 

where u -2 (u, 0, 0) and 8 (t) is a Heaviside function. The diagonal elements of tensor 
&b@, t - to) are 

sxz = [k*o.l,, g,, = [k*oI, $ , g,, = [k*c$ 

k*=(kr,h-v+r(t--o)kr,~*) 

Similar, although more cumbersome, expressions can be obtained for g,, and g,, with 

the use of (6). 
The explicit expression for tensor Gab (r -- ro, L - to) in coordinate representation is 

complicated and cumbersome ; the structure of all of its components is of the form 

(8) 

‘lab (’ 1 a7 t, exp - &, (t’_ to) i- 

5 - 20 - u( t - to) - ‘12~ (:v - ,Yo) 
> 
2 + (!, __ :, ):! + (_ _ 20)2 

,n * 

where Mab (rl ‘CC, t) are linear operators acting on the functions of space coordinates r 

and of parameters dependent on unit vector a and time in terms of the dimensionless 
combination z == I? (t - to). The drift of perturbations and their distortion with time can 
be seen from [8]. 

Owing to the positive definiteness of the quadratic form Q (k, t) as implied by (4) and 
the property v > 0, it follows from (7) that for all componentsof GaI, (k, t - to), G&l;, 
t - to) 1 + 0 when t - to -+ 00 , for any IL and 1’. According to (8) components 
Gab (r - ro, t - to) have the same property. Thus we obtain the known property of the 
stability of Couette flow (1) with respect to arbitrary small perturbations in an unbounded 
space for any u and I?. 

The behavior of small perturbations in more complicated flows of incompressible vis- 
cous fluid in an unbounded space can be similarly investigated. For example, for the flow 

Us = TYY Uy = - I’s, Uz =-- 0 

which corresponds to a uniform rotation of the fluid as a whole about the axis oz at an 

angular velocity l’ the evolution of perturbations is defined by formulas 

v (k, t) = f (k, t) c?tp (- vk?), p (k, t) = 2ip 1’ (k,uy - kuux) / k* (9) 

The expression for f (k, t) is fairly cumbersome and is not presented here. We only 
point out that for considerable t the behavior of v (k, t) is determined by the second 
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factor in the first formula of (9), i. e. the perturbations fade with time, Hence the rota- 
tion of a viscous incompressible fluid is stable with respect to such perturbations. 
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A solution of the Naviec-Stokes equations for the flow of fluid in and outside a 
drop with conditions of matching at the interface is derived by the method of 
finite differences. Drag coefficients ace determined in the range (0.5 < Re d 

100) of Reynolds numbers for a solid sphere, a drop, and a small gas bubble. Voc- 
tex and velocity distribution at the drop boundary is determined. 

The flow around a solid sphere in the intermediate range of Reynolds numbers had 
been ~ocoughly inv~tiga~d El]. Solutions for the problem of flow around a spherical 

drop ace presented in [Z, 31 for Re 4 1 . The method of joining asymptotic expansions 
was used in [4] for obtaining a solution for small Re with allowance for inertia terms in 
the Naviec-Stokes equations. In [5 - ‘71 solutions were derived for Re > 1 in the boun- 
dary layer approximation (a detailed analysis of approximate solutions for low and high 
Re appeared in the survey paper f8]). The particular case of the drop of water ln air, 

which is distinguished by the high ratio viscosities of the inner and outer media (p z 

56), was investigated in [Q] in the intermediate range of Reynolds numbers by the method 
of finite differences. It was shown there that for such p the drag of the moving drop is 
virtually the same as that of the solid sphere. Here, the drag of the drop is investigated 
for O,rP<, and Re<iOO. 

The ce~tii~earu~form motion of a drop in a homogeneous mass force field is consi- 
dered, The Webec number is assumed to be fairly low so that the drop victually retains 
its spherical shape. 

In a system of coordinates attached to the drop the motion is steady and axisymmetcic 
up to Re z 106 , as in the case of a solid sphere [IO]. 

With the coordinate origin located at the drop center and the polar axis directed down- 

stream (6 = 0) , the Navier-Stokes equations for the fluid flow in and outside the drop 
and the boundary conditions at the drop surface, expressed in terms of variables 9 (the 
stream unction) and 5 (the vortex), are of the form 


