# GREEN'S FUNCTIONS FOR SMALL PERTURBATIONS OF A PLANE INCOMPRESSIBLE COUETTE FLOW 

PMM Vol. 40, № 4, 1976, pp. 739-741
V. P. LESNIKOV and I. Z. FISHER
(Odessa)
(Received July 1, 1974)
Formulas are obtained for the evolution of small three-dimensional perturbations arbitrarily specified at the initial instant of time of a plane Couette flow of incompressible viscous fluid in an unbounded space.

The behavior of small three-dimensional perturbations of the velocity $\mathbf{v}(\mathbf{r}, \boldsymbol{t})$ and pressure $p(\mathbf{r}, t)$ fields in an unbounded incompressible viscous fluid on the background of a plane Couette flow

$$
\begin{equation*}
u_{x}=u+\Gamma y, \quad u_{y}=u_{z}=0, \quad p=\mathrm{const} \tag{1}
\end{equation*}
$$

where $u$ and $\Gamma$ are constants, was first considered in [1]. Formula for one of the components of velocity perturbations was also obtained there for some special form of initial conditions. Formulas which define the perturbation evolution under arbitrary initial conditions $\mathrm{V}(\mathbf{r})$ and $p(\mathbf{r})$ are derived below.

We proceed from the linearized Navier-Stokes equations [2]

$$
\begin{equation*}
\frac{\partial \mathbf{v}}{\partial t}+(u+\Gamma y) \frac{\partial \mathbf{v}}{\partial x}+\mathbf{x}^{0} \Gamma v_{y}+\frac{1}{p} \nabla p=\mathbf{v} \Delta \mathbf{v}, \quad \operatorname{div} \mathbf{v}=0 \tag{2}
\end{equation*}
$$

where $x^{\prime}$ is the unit vector of the ox-axis.
We pass to the Fourier representation in space variables, where we shall use $k$ instead of $r$. Using (2) for $v(k, t)$ and $p(k, t)$ we obtain

$$
\begin{align*}
& \mathbf{v}(\mathbf{k}, t)=\mathbf{f}(\mathbf{k}, t) \exp \left[-i t u k_{x}-v t Q(\mathbf{k}, t)\right]  \tag{3}\\
& p(\mathbf{k}, t)=\frac{k^{* *}}{k^{t}} p\left(\mathbf{k}^{*}\right) \exp \left[-i t u k_{x}-v t Q(\mathbf{k}, t)\right] \\
& Q(k, t)=\left(1+\Gamma^{2} t^{2} / 3\right) k_{x}{ }^{2}+\Gamma t k_{x} k_{y}+k_{y}{ }^{2}+k_{z}{ }^{2}  \tag{4}\\
& \mathbf{k}^{*}=\left(k_{x}{ }^{*}, k_{y}{ }^{*}, k_{z}^{*}\right)=\left(k_{x}, k_{y}+\Gamma k_{x} t, k_{z}\right)  \tag{5}\\
& f_{x}(\mathbf{k}, t)=v_{x}\left(\mathbf{k}^{*}\right)+\frac{k_{x}}{k_{x}{ }^{2}+k_{z}{ }^{2}}\left(k_{y}{ }^{*}-k_{y} \frac{k^{* 2}}{k^{2}}\right) v_{y}\left(\mathbf{k}^{*}\right)+  \tag{6}\\
& +\frac{k_{z}{ }_{z}^{2} k^{* 2}}{k_{x}\left(k_{x}{ }^{2}+k_{z}{ }^{2}\right)^{3 / 2}}\left[\operatorname{arctg}\left(\frac{k_{y}}{\sqrt{k_{x}{ }^{2}+k_{z}{ }^{2}}}\right)-\operatorname{arctg}\left(\frac{k_{y}{ }^{*}}{\sqrt{k_{x}{ }^{2}+k_{z}{ }^{2}}}\right)\right] v_{y}\left(\mathbf{k}^{*}\right. \\
& f_{y}(k, t)=\frac{k^{* 2}}{k^{2}} v_{y}\left(\mathbf{k}^{*}\right) \\
& f_{z}(\mathbf{k}, t)=v_{z}\left(\mathbf{k}^{*}\right)+\frac{k_{z} i^{* 2}}{k_{x}{ }^{2}+k_{z^{2}}}\left\{\frac{k_{y}{ }^{*}}{k^{* 2}}-\frac{k_{y}}{k^{2}}+\frac{1}{\sqrt{k_{x}{ }^{2}+k_{z}{ }^{2}}} \times\right. \\
& \left.\left[\operatorname{arctg}\left(\frac{k_{y}^{*}}{\sqrt{k_{x}^{2}+k_{z}^{2}}}\right)-\operatorname{arctg}\left(\frac{k_{y}}{\sqrt{k_{x}{ }^{2}+k_{z}^{2}}}\right)\right]\right\} v_{y}\left(\mathbf{k}^{*}\right)
\end{align*}
$$

We set in Eqs. (2)

$$
\mathbf{v}(\mathbf{r})=\operatorname{rot}\left(\alpha \delta\left(\mathbf{r}-\mathbf{r}_{0}\right)\right), \quad \alpha^{2}=1
$$

where $\alpha$ is some constant unit vector and $\delta(\mathbf{r})$ is a three-dimensional Dirac function, and substitute everywhere $t=t_{0}$ for the initial instant, $t=0$. These initial conditions yield the Fourier representation of the tensor of Green's function $G_{a b}\left(\mathbf{r}-\mathbf{r}_{0}, t-t_{0}\right)$ of the considered problem of perturbation propagation from the instantaneous source at point $\mathbf{r}=\mathbf{r}_{0}$ at instant $t=t_{0}$. The structure of that tensor is defined by

$$
\begin{align*}
& \left.G_{a b}\left(\mathbf{k}, t-t_{0}\right)=i \theta\left(t-t_{0}\right)\left|\begin{array}{ccc}
g_{x x} & g_{x y} & 0 \\
0 & g_{u y} & 0 \\
0 & g_{z y} & g_{z z}
\end{array}\right| \right\rvert\, \times  \tag{7}\\
& \quad \exp \left[-i \mathbf{k}^{*}\left(\mathbf{r}_{0}+\mathbf{u}\left(t-t_{0}\right)\right)-v\left(t-t_{0}\right) Q\left(\mathbf{k}, t-t_{0}\right)\right]
\end{align*}
$$

where $\mathbf{u}=(u, 0,0)$ and $\theta(t)$ is a Heaviside function. The diagonal elements of tensor

$$
\begin{array}{ll}
g_{a b}\left(\mathbf{k}, t-t_{0}\right) \text { are } & g_{x x}=\left[\mathbf{k}^{*} \alpha_{x}\right]_{x}, g_{y y}=\left[\mathbf{k}^{*} \alpha\right]_{y} \frac{k^{* 2}}{k^{2}}, g_{z z}=\left[\mathbf{k}^{*} \alpha\right]_{z} \\
\mathbf{k}^{*}=\left(k_{x}, k_{y}+\Gamma\left(t-t_{0}\right) k_{x}, k_{z}\right)
\end{array}
$$

Similar, although more cumbersome, expressions can be obtained for $g_{x y}$ and $g_{z y}$ with the use of (6).

The explicit expression for tensor $G_{a b}\left(\mathbf{r}-\mathbf{r}_{0}, t-t_{0}\right)$ in coordinate representation is complicated and cumbersome; the structure of all of its components is of the form

$$
\begin{align*}
& G_{a b}\left(\mathbf{r}-\mathbf{r}_{0}, t-t_{0}\right)=\frac{\theta\left(t-t_{0}\right)}{\sqrt{\left(4 \pi v\left(t-t_{0}\right)\right)^{3}\left(1+\tau^{2} / 12\right)}} \times  \tag{8}\\
& \quad M_{a b}(\mathbf{r} \mid \alpha, \tau) \exp \left\{-\frac{1}{4 \nu\left(t-t_{0}\right)} \times\right. \\
& \left.\quad\left[\left(\frac{x-x_{0}-u\left(t-t_{0}\right)-1 / 2 \tau\left(y-y_{0}\right)}{\sqrt{1+\tau^{2} / 12}}\right)^{2}+\left(11-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]\right\}
\end{align*}
$$

where $M_{a b}\left(\left.\mathbf{r}\right|^{\prime} \alpha, \tau\right)$ are linear operators acting on the functions of space coordinates : and of parameters dependent on unit vector $\alpha$ and time in terms of the dimensionless combination $\tau=\Gamma\left(t-t_{0}\right)$. The drift of perturbations and their distortion with time can be seen from [8].

Owing to the positive definiteness of the quadratic form $Q(\mathbf{k}, t)$ as implied by (4) and the property $v>0$, it follows from (7) that for all components of $G_{a b}\left(k, t-t_{0}\right), G_{a b}(k$, $\left.t-t_{0}\right) \mid \rightarrow 0$ when $t-t_{0} \rightarrow \infty$, for any $u$ and $\Gamma$. According to (8) components $G_{a b}\left(\mathbf{r}-\mathbf{r}_{0}, t-t_{0}\right)$ have the same property. Thus we obtain the known property of the stability of Couette flow (1) with respect to arbitrary small perturbations in an unbounded space for any $u$ and $\Gamma$.

The behavior of small perturbations in more complicated flows of incompressible viscous fluid in an unbounded space can be similarly investigated. For example, for the flow

$$
u_{x}=\Gamma y, \quad u_{y}=-\Gamma x, \quad u_{z}=0
$$

which corresponds to a uniform rotation of the fluid as a whole about the axis $O z$ at an angular velocity $\Gamma$ the evolution of perturbations is defined by formulas

$$
\begin{equation*}
\mathbf{v}(\mathbf{k}, t)=\mathbf{f}(\mathbf{k}, t) \exp \left(-v h^{2} t\right), p(\mathbf{k}, t)=2 i \rho \Gamma\left(k_{x} v_{y}-k_{y} v_{x}\right) / k^{2} \tag{9}
\end{equation*}
$$

The expression for $\mathbf{f}(\mathbf{k}, t)$ is fairly cumbersome and is not presented here. We only point out that for considerable $t$ the behavior of $\mathbf{v}(\mathbf{k}, t)$ is determined by the second
factor in the first formula of (9), i. e. the perturbations fade with time. Hence the rotation of a viscous incompressible fluid is stable with respect to such perturbations.

## REFERENCES

1. Rosen, G., General solution for perturbed plane Couette flow. Phys. Fluids, Vol. 14, № 12, 1971.
2. Landau, L. D. and Lifshits, E. M., Mechanics of Continuous Media. Moscow, Gostekhizdat, 1954. (See also English translation, Pergamon Press, Fluid Mechanics, Book № 09104, 1959).

Translated by J.J. D.
UDC 532.516

## FLOW AROUND A SPHERICAL DROP AT INTERMEDIATE REYNOLDS NUMBERS

PMM Vol. 40, № 4, 1976, pp.741-745<br>V. Ia. RIVKIND, G. M. RYSKIN and G. A. FISHBEIN<br>(Leningrad)

(Received December 16, 1975)
A solution of the Navier-Stokes equations for the flow of fluid in and outside a drop with conditions of matching at the interface is derived by the method of finite differences. Drag coefficients are determined in the range $(0.5 \leqslant \operatorname{Re} \leqslant$ 100 ) of Reynolds numbers for a solid sphere, a drop, and a small gas bubble. Vortex and velocity distribution at the drop boundary is determined.

The flow around a solid sphere in the intermediate range of Reynolds numbers had been thoroughly investigated [1]. Solutions for the problem of flow around a spherical drop are presented in [2,3] for $\mathrm{Re} \ll 1$. The method of joining asymptotic expansions was used in [4] for obtaining a solution for small Re with allowance for inertia terms in the Navier-Stokes equations. In [5-7] solutions were derived for $\mathrm{Re} \gg 1$ in the boundary layer approximation (a detailed analysis of approximate solutions for low and high Re appeared in the survey paper [8]). The particular case of the drop of water in air, which is distinguished by the high ratio viscosities of the inner and outer media ( $\mu \approx$ 56), was investigated in [9] in the intermediate range of Reynolds numbers by the method of finite differences. It was shown there that for such $\mu$ the drag of the moving drop is virtually the same as that of the solid sphere. Here, the drag of the drop is investigated for $0 \leqslant \mu<\infty$ and $\mathrm{Re} \leqslant 100$.
The rectilinear uniform motion of a drop in a homogeneous mass force field is considered. The Weber number is assumed to be fairly low so that the drop virtually retains its spherical shape.

In a system of coordinates attached to the drop the motion is steady and axisymmetric up to $\mathrm{Re} \approx 100$, as in the case of a solid sphere [10].

With the coordinate origin located at the drop center and the polar axis directed downstream $(\theta=0)$, the Navier-Stokes equations for the fluid flow in and outside the drop and the boundary conditions at the drop surface, expressed in terms of variables $\psi$ (the stream function) and $\zeta$ (the vortex), are of the form

